Physics of Semiconductor Devices

Lecturer: Peter Hadley, PhD.

Project:
A Physicists Guide To The Exam

Author: Guenter Krois

February 2, 2010



Contents

1 Introduction

1.1

1.2

You need to know that everything moves like a wave and exchanges energy and mo-
mentum like a particle. The correspondence between the wave nature and the particle
nature of something is given by the Einstein relation, £ = hf, and the de Broglie
relation, p=h/\. . . L
You need to be familiar with the solutions of Schroedinger equation for the three-
dimensional potential well. . . . . . . . . . ... ...

2 Crystals

2.1

2.2

2.3

24

2.5

2.6
2.7

For the exam you need to know that the allowed electron energies in a crystal are
arranged in bands. You need to know what the Fermi energy is and must be able to
explain the difference between a metal, a semiconductor, and an insulator in terms of
the energy bands and the Fermi energy. . . . . . . . . .. . ...
You must know what the Fermi function is and how to calculate whether an electron
state is occupied. . . . ... L
A three dimensional potential well is called a quantum dot if the sides of the well are
small. If the sides are large, it is also known as the free electron model. You must be
able to express the energies in this case in terms of the wavenumbers k.. . . . . . . .
You must know what the density of states is and the form of the density of states for
the free electron model. . . . . . . . ..o
In the expression n = [ 5) ! Ng)F(g)dE n is the density of electrons in the conduction
band, N(E) is the density of states, F(E) is the Fermi function, E0 is the bottom of
the conduction band and El is the top of the conduction band. You should be able
to explain how the Fermi energy can be determined from this expression. . . . . . . .
You should now what Miller indicies are. . . . . . . . . ... ... ...
You should be able to explain what the diffraction of electron waves has to do with
the allowed electron energies in a semiconductor. . . . . . . ... ... ... ... ..

3 Intrinsic Semiconductors

3.1

3.2
3.3

You need to be able to look at a bandstructure diagram for a semiconductor and be
able to identify the conduction band, the valence band, the energy gap, whether the
semiconductor is direct or in direct, and to be able to determine the effective masses
of electrons and holes. See problems 1 and 2. . . . .. ... ... .. .........
You need to be able to explain what a holeis. . . . . . . . . ... ... .. ......
You need to be able to calculate the density of electrons in the conduction band,
the density of holes in the valence band, and the position of the Fermi energy for an
intrinsic semiconductor. See problems 3 and 4. . . .. ... ..o



Extrinsic Semiconductors 7

4.1 Be able to explain under what conditions donor and acceptor atoms become ionized. 7
4.2 You need to know how to calculate the concentration of electrons and holes for an
extrinsic semiconductor. . . . . ... L L 8
4.3 You need to know how to calculate the Fermi energy in an extrinsic semiconductor
as a function of doping and temperature. . . . . . . . .. ... oL 8
4.4 Know what a degenerate semiconductoris. . . . . . . . . ... ... L 8
Transport 9
5.1 Be able to calculate the response of electrons and holes to small electric fields. . . . . 9
5.2 Know that the drift velocity saturates at fields above about 1000 V/em. . . . .. .. 10
5.3 Know when the low field formulas are not valid and what processes occur at high
electric field strengths. . . . . . . . . ..o 11
5.4 Be able to explain drift and diffusion. Know the transport equations where the current
density is described by a drift term and a diffusion term. . . . . . ... ..o L. 12
p-n junction 13
6.1 Be able to calculate the contact potential. . . . . . . . ... ... ... 0. 13
6.2 Know the field, the potential, and the charge distribution in the depletion model of a
P-DJunction. . . o. oL e e 13
6.3 Be able to calculate the width of the depletion layer. . . . . . .. ... ... .. ... 14
6.4 Be able to explain carrier generation and recombination in a pn-diode. Know the
equations for drift and diffusion of electrons and holes. . . . . . . .. ... ... ... 15
6.5 Be able to derive the diode equation I = Io(e’“i?—VT — 1) and know when this approxi-
mation is not valid. . . . . . . . . L 15
6.6 Be able to explain what happens to the depletion widths, and the drift and diffusion
currents for forward and reverse bias. . . . . . ... ... L L 17
Contacts 18

7.1 Be able to describe a metal-semiconductor junction. Known under what conditions
a Schottky barrier is formed, when an ohmic contact is formed, and when a tunnel

contact is formed. . . . . . . ... L 18
7.2 Be able to explain how a junction can be more transparent for electrons than for holes. 18
7.3 Know the relationship between current and voltage in a Schottky contact. . . . . . . 18
7.4 Be able to explain the role of interface states. . . . . . . .. . ... ... ... .... 18
JFET 20
8.1 Be able to describe the operation principle of JFETs and MESFETs. . . . . . .. .. 20
8.2 Know how to calculate the pinch-off voltage. . . . . . . . . . ... .. .. ... ..., 20
8.3 Be able to calculate the drain current for a JFET or MESFET. Know the what the
linear regime and the saturation regimes are. . . . .. . .. ... ... .. ... ... 20
MOSFET 21
9.1 Be able to describe a MOS capacitor in terms of the flatband voltage, threshold
voltage, acuumulation, depletion, and inversion. . . . . . . ... . ... ... .. .. 21
9.2 Draw the charge density, electric field, and electrostatic potential as a function of
position in a MOS capacitor. . . . . . . . . ... 21

9.3 Be able to draw the band diagrams for a nMOS capacitor or a pMOS capacitor. . . . 21

ii



9.4 Know how the equation for the drain current in the linear regime is derived. . . . . .
9.5 Be able to explain ’pinchoff’ and what controls the drain current in the saturation
regime. Know the equation for the drain current in the saturation regime. . . . . . .
9.6 Know why the simple model for MOSFETs is inadequate to describe very small MOS-
FETs. . . . e
9.7 Be able to draw the electric field as a function of position along a cross section from
the gate, through the oxide and into the substrate for various body voltages. Know
how changing the body voltage modifies the drain current. . . . . . . . . .. ... ..

10 Bipolar

10.1 Know the forward active, reverse active, cut-off, and saturation operation modes of a

bipolar transistor. . . . . . . . . L e e e e e e
10.2 Know how the emitter, base, and collector are doped and why. . . . . ... ... ..
10.3 Be able to explain how a bipolar transistor works and why the base must be thin. . .

11 Opto-electronics

11.1 Be able to describe how a light emitting diode, solar cell, and a laser diode work.
Know what determines the color of a LED or laser. . . . . . ... ... ... ... ..
11.2 Be able to explain total internal reflection and how it is used in an optical fiber and
why it can be a problem coupling light out of an LED. . . . . .. ... .. ... ...
11.3 Know the difference between spontaneous emission and stimulated emission. Know
why a laser diode has a threshold current. . . . . . . . .. ... .. ... ... ..
11.4 Be able to describe light absorption in a semiconductor and what this has to do with
the bandgap. . . . . . . . e

12 Appendix

A Very important pages of Singh - Scans . . . . . ... ... oL
B Important problems - solved . . . . . . . . . .. ...
B.1 Average electron energy inametal . . . .. ... ..o
B.2  Band structure - Exam March 2007 . . . . . ... ... oo
C  Best of Equation - A Selection . . . . . . . . . . .. ... ...

iii

24



Abstract

This article should provide answers to important questions for the exam of the lecture "Physics of
Semiconductor Devices’. It is mainly based on the questions given on the course homepage at the
end of each chapter in the section 'For The Exam’. Additional information from the 'Problems’
also given on the course homepage, have been used to complete this collection. However, I have to
state clearly here that it is not enough to just study with this article. For this reason, for many
questions references to the course notes are given, as well as references to Singh - the textbook I
worked with - where more (detailed) information can be found. I gave some general notes at the
beginning of each chapter, where information for the whole chapter can be found and some more
explicit references at each question. Concerning the books, as stated above, I worked with Singh and
hence only references to Singh are given in this article. However, three books have been suggested
for the lecture:

e ’Sze - Physics of semiconductor devices’ ([3]), which is pretty hard to get hold of, since there
are no copies to be found in the lirbrary

e 'Thuselt - Physik der Halbleiterbauelemente’ ([4]) a detailed semiconductor book in German,
which can also be downloaded as an ebook.

e ’'Singh - Semiconductor Devices’ ([2]) a quite easy to read book about semiconductors, which
does not go too much into detail, but provides all the information needed.

I hope this article provides some help to effectively study for this lecture.
Good luck! Guenter Krois



Chapter 1

Introduction

1.1 You need to know that everything moves like a wave and ex-
changes energy and momentum like a particle. The correspon-
dence between the wave nature and the particle nature of some-
thing is given by the Einstein relation, £ = hf, and the de
Broglie relation, p = h/\.

1.2 You need to be familiar with the solutions of Schroedinger equa-
tion for the three-dimensional potential well.

Literature References:Lecture Notes, Oct 06 2009/p17; see also Problem 1.3
You can make the answer to this question arbitrarily long and difficult, let’s keep it simple. Basically
we need to know the Schroedinger equation for one state:

L d -
ih— ) = Hip (1.1)

With the stationary solution

Hiy) = Etygy)
where ;) = ef%E(t*to)wt
Using the Hamiltonian for a 3D potential well: H = % + V(z) =y g E—EVQ + Viz) the
Schroedinger equation above becomes:

L d —h?
ih— ) = (%VQ + Vo)) (1.2)
The solution for this differential equation is:
V2V2V2 iy . mgma | mgma . numx
Yy = L_qu_yL_Ze “whsin I sin L, sin I (1.3)
2r2 n2  n?  p2
Erpnyn, = hw = (5 +—5+-5) (1.4)
Nty 2m L2 LZ L?



Chapter 2

Crystals

General literature references: lecture notes Oct 6th 13th and 20th 2009; Singh Chapter 1

2.1 For the exam you need to know that the allowed electron ener-
gies in a crystal are arranged in bands. You need to know what
the Fermi energy is and must be able to explain the difference
between a metal, a semiconductor, and an insulator in terms of
the energy bands and the Fermi energy.

Literature references: lecture notes Oct 6th 2009/p26-29; Singh p33-37
See scans of Singh p36/37 in Appendix A, fig A.1.

2.2 You must know what the Fermi function is and how to calculate
whether an electron state is occupied.

Literature references: Problem 2.1 and 2.4; Singh p32

The Fermi function is a distribution function which gives the probability that an allowed energy level
at is occupied. At T = 0 the fermi-function is a simple step function. Hence, in order to calculate
whether an energy state is occupied or not, we simply need the equation for the fermi function (or
more exactly the Fermi-Dirac distribution function):

1
fB=—F%- (2.1)
1+e k8T

2.3 A three dimensional potential well is called a quantum dot if
the sides of the well are small. If the sides are large, it is also
known as the free electron model. You must be able to express
the energies in this case in terms of the wavenumbers k.

Literature references: Lecture Notes Oct 13th/p17-23; Problem 1.3
The equation for the energy has already been given above - see equation 1.4. Some relationships
which might be helpful here are:



Wavevector: k; = QT” = Fr
T

De Broglie: p = % —>p= hk

If there is a question asking for the energy it takes to excite an electron from one energy level to
another, make sure you calculate the energy difference AE = E,, — E,, between the two given
levels.

2.4 You must know what the density of states is and the form of
the density of states for the free electron model.

Literature references: Lecture Notes Oct 6th/p21+; Problem 2.3 and 2.4; Singh p25, derivation p509
"Density of states is the number of available elecronic states per unit volume per unit energy around
an enery E’ [2] The 1D-density of states is:

Vom3/2EL/2
R
As can be seen the form of the 1D density of states is y = a/x (see also bottom right of fig A.10 in

Appendix A)
For the whole derivation see scans of Singh pages 509-513 in Appendix A - (fig A.9 and fig fig:Singh512DoSDerivat

Ng (2.2)

2.5 In the expression n = fél N F(g)dE n is the density of electrons
in the conduction band, N(E) is the density of states, F(E) is
the Fermi function, EO is the bottom of the conduction band
and E1 is the top of the conduction band. You should be able
to explain how the Fermi energy can be determined from this
expression.

Literature references: Lecture Notes Oct 6th/p21+; Problem 2.3 and 2.4; Singh p25, derivation p509
The equations for the fermi function (2.1) and the density of states (2.2) are given, plugging the
fermi-function in, we see that for T=0K it just changes the limits of the integral to Fy = 0 and
Ey = E¢. The integral over the density of states is quite trival.

See Problem ’Average electron energy in a metal’ in Appendix B.

2.6  You should now what Miller indicies are.

Literature references: Lecture Notes Oct 13th/p15; Problem 2.5; Singh p2/
"Miller Indices are a scheme used to describe latice planes, directions and points. The following
procedure is used to the the Miller indices of plane:

1. Define the x,y,z-axis
2. Take the intercepts of the plane along the axes in units of lattice constants.

3. Take the reciprocal of the intercepts and reduce them to the smallest integers, h )k, and 1. The
resulting numbers are called Miller indices.

The notation (hkl) denotes a family of paralles plaens, while the notation hkl denotes a family of
equivalent planes.” [2]



2.7 You should be able to explain what the diffraction of electron
waves has to do with the allowed electron energies in a semi-
conductor.

If an electron with a forbidden energy for a certain material is shot at such a material, it is reflected
out again. This happens due to quantum effects and is explained by the solution for the Schroedinger
equation. Sloser explanations can be found in Solid State Physics books such as ’Kittel - Solid State
Physics’.



Chapter 3

Intrinsic Semiconductors

General literature references: lecture notes Oct 20th 2009; Singh Chapter 2

3.1 You need to be able to look at a bandstructure diagram for
a semiconductor and be able to identify the conduction band,
the valence band, the energy gap, whether the semiconductor
is direct or in direct, and to be able to determine the effective
masses of electrons and holes. See problems 1 and 2.

Literature references: Lecture Notes Oct 13th/p3+; Problem 3.5, 3.6;

See copy of problem ’Band structure’ in Appendix B.

As for the effective mass, it can be easily derived, knowing F = h; fj. Just derivate F twice with
respect to k, since the effective mass is given by the curvature of E over k.

3.2 You need to be able to explain what a hole is.

Make sure you understood the concept of a hole well and that you are able to explain it with your own
words. One well formulated answer would be: ’An electron hole is the conceptual and mathematical
opposite of an electron, useful in the study of physics, chemistry, and electrical engineering. The
concept describes the lack of an electron at a position where one could exist in an atom or atomic
lattice’ [5]

3.3 You need to be able to calculate the density of electrons in the
conduction band, the density of holes in the valence band, and
the position of the Fermi energy for an intrinsic semiconductor.
See problems 3 and 4.

Literature references: Lecture Notes Oct 13th/p3+; Problem 3.5, 3.6; Singh 64-68
Density of electrons in the conduction band:

n= Nge F 8T ;Ng=2( 572 (3.1)



Density of holes in the valence band:

_Erp-Ey kT
n = Nve kT ;NV — Q(M

(3.2)

N¢ and Ny respectively are the effective densities of states for electrons and holes. Knowing that
in an intrinsic semiconductor the number of holes is equal to the number of electrons (since each

electron in the condcution band leaves a hole in the valence band):

n=p= nz2 = N¢oNye*rB?

one can easily calculate the position of the Fermi energy:

_Ec—f-EV kT
N 2 2

Ny

E
ja Ne

in(2Y)

(3.3)

For a derivation of the first two equations see Singh or the lecture notes given in the references.



Chapter 4

Extrinsic Semiconductors

General literature references: lecture notes Oct 27th 2009; Singh Chapter 2

4.1 Be able to explain under what conditions donor and acceptor
atoms become ionized.

Literature references: lecture notes Oct 27th/14; Singh p79

"Explanation for n-type: At very low temperatures all of the electrons are confined to the donor
atom and thus can not carry any current. With rising temperature electrons are excited into the
conduction band (’freezout range’, linear increment of the electron density over temperature) until
all of the donors are ionized - ’saturation range’. At some point the temperature gets high enough
so that the intrinsic carrier density exceeds the donor density, hence the carrier density is further
increased. ’ [2]. See figure 4.1.
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Figure 4.1: Electron density as a function of temperature.



4.2 You need to know how to calculate the concentration of elec-
trons and holes for an extrinsic semiconductor.

Literature references: Lecture Notes Oct 27th/p27; Nov 11th/p7

See section 3.3

n; _ nf
n  Np—Ngu
2

Y

p

2
U

" Na—Np

4.3 You need to know how to calculate the Fermi energy in an ex-
trinsic semiconductor as a function of doping and temperature.

Literature references: Lecture Notes Oct 27th/p27; Nov 11th/p7

See section 3.3
Ny

EF = EV + kBTln(m)

N

These equations can be easily derived from the equations for n and p given in section 3.3 with the
equations given in section 4.2.

4.4 Know what a degenerate semiconductor is.

A semiconductors so highly doped that they have conductivity characteristics of metals.
(http://en.wikipedia.org/wiki/Semiconductor)



Chapter 5

Transport

General literature references: lecture notes Nov 03th 2009; Singh Chapter 3 (p90-124)

5.1 Be able to calculate the response of electrons and holes to small
electric fields.

Literature references: Lecture Notes Nov 3rd/p3-7,14-18,22-25; Singh p93-94, 104-107, 120-12/
Several equations are important in this section:

Drift: Charge carrier movement due to electric fields.

At small electric fields material properties such as mobility and conductivity can be related to
microscopic properties such as scattering rate or relaxation time. One way to do this is the Drude
model, which makes the following assumptions:

e Electrons don’t interact with each other.
e 7, is the mean time between successive collisions of electrons.
e In between collsisions, the electrons move according to the free electron equation: hAdk/dt = F

"After a collision the electrons lose all their exces energy (on the average) so that the electron gas is
essentially at thermal equilibirium. This assumption is really valid only at very low elecric fields.’
[2] This means that an electron is only gaining speed in between collisions, due to the external field,
which gives for the average velocity: (be carful, Singh denotes the electric field as F , here it is
denoted as E)

- — *
v = —eFE =m"a=m
dt

v = eETs, —
avg — — — Ud
g m*

with the drift velocity v;. For the current density we get:

ne27'sc =

E

J = —nevj =

comparing to Ohm’s law J=0oFE , we get for the conductivity:

’I’Z@QTSC

g =
m*



and with the definition of mobility vy = —ME, we get for the mobility:

€Tsc

B=
m

Watch out for the signs, the hole drift velocity is vg, = ,upE and the electron drift velocity is

UUZn = —pn k.
If there are holes and electrons in the material, we get for the current density:

—

J= —nevgy + nevg, = (nepy, + neup)ﬁ =oF

Another important relationship is 'Matthiessen’s Rule’ which describes the relationship between the
scattering times of the lattice and the impurities:
1 1 1
n— +

Tsc Tsc,lattice Tsc,impurity

Diffusion: Charge carrier movement due to concentration gradients.
For a derivation see lecture notes of Nov 3rd pl4.
For the current density of diffusion we simply get:

d_n
dx

o dp
Ipdiff = — le] Dp%

Jn,giff = |€| D,

where D,, and D,, are the diffusion constants for electrons and holes

kBT 1y,
€

kT
Dn: Belun; Dp:

Summing up the effects of drift and diffusion we get the following current density equations:

— —

d
Jp = —nep, E + BDn—n

dx
- - d,
Jp = nepp, Bl — erd—p

x

It is very important to understand the principles of drift and diffusion in order to understand the
processes in a pn-junction, which is in turn essential to understand any semiconductor device.

5.2 Know that the drift velocity saturates at fields above about
1000 V /cm.

see next question

10



5.3 Know when the low field formulas are not valid and what pro-
cesses occur at high electric field strengths.

Literature references: Lecture Notes Nov 3rd/pl1; Singh p93

For low electric fields the carrier movement is described by the Drude model (doesn’t take effective
mass into account though). The assumptions taken for this model are givenin section 5.1

"According to these assumptions, immediately after a collision the electron velocity is the same
as that given by the thermal equilibrium conditions. This average velocity is thus zero, after colli-
sions. The electron gains a velocity in between collisions, i.e., only for the time 7s..” [2]

Singh p98 High Field Transport: At high electric field (F' 1 — 100kV/cm) the electrons ac-
quire a high average energy. The drift velocities are also quite high. As the charge carriers gain
energy from the field, they suffer greater rates of scattering, i.e., 75, decreases. The mobility thus
starts to decrease. Hence, the drift velocity becomes saturated at high electric fields.

108
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CARRIER DRIFT VELOCITY (cm/s)
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Figure 5.1: Velocity-field realations for several semiconductors at 300K. Note how the drift velocity of silicon slowly
saturates, while the drift velocity of GaAs peaks first and saturates after decreasing again. (from [2])

Singh p100 Very High Field Transport - Breakdown Phenomena: At E > 100kV/cm; the
semiconductor suffers a ’breakdown’ caused by two effects which multiply the carrier density:
Impact Ionization: Carriers are accelerated to an energy above the gap before they scatter. They
generate more electron-hole pairs. This results in an avalanche breakdown of the device.

Band to Band Tunneling: Zener Tunneling: At strong electric fields, the electrons in the valence
band can tunnel into an unoccupied state in the conduction band.

Electrons in
conduction band

Available empty
states (holes) in E,
valence band >

Figure 5.2: Zener tunneling in a pn-junction (from [2])
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5.4 Be able to explain drift and diffusion. Know the transport equa-
tions where the current density is described by a drift term and
a diffusion term.

Literature references: Singh p92-94,104
For the equations see section 5.1

12



Chapter 6
p-n junction

General literature references: lecture notes Nov 10th and 17th 2009; Singh Chapter 5 (p159-179)
Make sure that you really understand the pn-junction and there processes therein and that you
can explain in detail. It is very important for the oral exam, since you will need it to explain any
semiconductor device properly. The processes in a pn-junction are way easier to explain if you
are able to draw the corresponding graphs properly. Have a look at Singh p161/162 (included in
Appendix A - fig A.2)

6.1 Be able to calculate the contact potential.

Literature references: lecture notes Nov 10th/10,11; Singh p163
See lecture notes and Singh for derivation - you should know this derivation!

NpN
eVoi = kpTin(—252)
n

i

6.2 Know the field, the potential, and the charge distribution in the
depletion model of a p-n junction.

Literature references: lecture notes Nov 10th 10-20; Singh 160+; Problem 6.1

All these parameters can be derived by the depletion approximation discussed in the references given
above. Since the derivation is very important, I included the scans of the derivation (see figurees
6.1, 6.2 and 6.3). Please make sure that you also understand the theory behind this approximation.
The depletion approximation simplifies the calculation of important properties of the pn-junction
such as depletion width, charge distribution, electric field, etc. The following assumptions are taken
in this approximation:

1. 'The physical junction is abrupt and each side is uniformly doped.” [2]

2. The mobile charge density in the depletion region is very small and thus will be assumed zero,
of course only for the solution of the Possion equations, not for the calculation of the current
flow.

13
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Figure 6.1: Depletion approximation 1 - Charge distribution and electric field in a pn-junction; Lecture notes of Nov
10th p15
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Figure 6.2: Depletion approximation 2 - Potential in a pn-junction; Lecture notes of Nov 10th p18/19

6.3 Be able to calculate the width of the depletion layer.

This question basically belongs to the one above, since the depletion width is ’covered’ by the
derivation of the depletion approximation.

14
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Figure 6.3: Depletion approximation 3 - Depletion width in a pn-junction; Lecture notes of Nov 10th p20

6.4 Be able to explain carrier generation and recombination in a pn-
diode. Know the equations for drift and diffusion of electrons
and holes.

Literature references: lecture notes Nov 17th 10-12; Singh 113
The processes how carriers are generated and how they recombine should be very clear to you
anyway. The necessary equations are given in the next question.

6.5 Be able to derive the diode equation [ = Io(e’ﬂj?vT — 1) and know
when this approximation is not valid.

Literature references: lecture notes Nov 17th p10-14; Singh 174-178

This is another rather long derivation which should be known. However, as with every derivation, as
soon as the basic principles are clear it is pretty easy. I found it pointless to type the whole thing, so
I just included the according copies of the lecture notes and added some notes for a few lines which
might be unclear.

We start the whole derivation with calculating the diffusion current for minority carriers in a n-type
semiconductor (the calculation for the p-type is completely analogue)

15



Diffusion Diffusion current
n-type n-type
Injecting = —x
sutie % > _ p,(x)=p,, +(p,(0)~p,)exp| —
e e B =t B B P, ) A o) L,
3 » o
0 ; : ox T P,
recombination time d
(0= Do +(2,0) - P )exp| P Jars =D, g
)= - - exp| — i A
P, Py T\ D, Do )EXP I, 0 Vb -
(]
dp eD —x
L =.Dr Jue, =—€D,—=(p,(0)—p,, ) —=exp| —
P p'p diff . = n no
/‘ i 7 dx L, L,
Injection only occurs at the surface. There the At the edge of the depletion region:
minority carrier density is p,(0). diffusion length dp eD,
: Jaz»=—D,——=(1,0)=p,) .
§ dx L, ¥

Figure 6.4: Derivation of the diode current 1; Lecture notes of Nov 17th p10,11
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Figure 6.5: Derivation of the diode current 2; Lecture notes of Nov 17th p11,12
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Figure 6.6: Derivation of the diode current 3; Lecture notes of Nov 17th p14

In the left part of figure 6.5 it might be unclear where the p,(0) and p,o parts come from. They
As given in section 6.1 the built-in

simply come from our derivation of the built-in potential.
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potential is:

NpN
eV = kpTin( D2 A)

%

Knowing the law of mass action: n,n, = p,p, = nf we can rewrite the built in potential to:

kBT P kBT n
Vi = ——In(=2); Vi = ——In(—)
n e ny
and hence: -
DPn np
eV =V
For our derivation we need to know that p,(0) = p,e *87 since there is a voltage applied to the

eVii
pn-jnction and ppg = ppe*s” for the intrinsic minority carrier density.

6.6 Be able to explain what happens to the depletion widths, and
the drift and diffusion currents for forward and reverse bias.

Literature references: lecture notes Nov 17th p7,8; Singh 170,171
This is also a very important question for the understanding of a pn-junction. It is again easier to
understand and explain this question when you are able to draw the accoring graph (see references).
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Chapter 7

Contacts

General literature references: lecture notes Nov 24th 2009; Singh Chapter 6

7.1 Be able to describe a metal-semiconductor junction. Known
under what conditions a Schottky barrier is formed, when an
ohmic contact is formed, and when a tunnel contact is formed.

Literature references: lecture notes Nov 24th p3; Singh p227-256,240-243
Here it is again important for the understanding (and to be able to explain it properly) to be able
to draw the band diagrams with all important parameters properly.

7.2 Be able to explain how a junction can be more transparent for
electrons than for holes.

7.3 Know the relationship between current and voltage in a Schot-
tky contact.

Literature references: lecture notes Nov 24th p15; Singh p235-236
Basically we get the same relationship as width diodes in section 6.5

I=1Iyy+Ins= Is(ekB—T)

7.4 Be able to explain the role of interface states.

Literature references: lecture notes Nov 24th p12; Singh 228

"According to the discussion so far, the Schottky barrier height for n- or p-type semiconductors de-
pends upon the metal and the semiconductor properties. However, it is found experimentally that the
Schottky barrier height is usually independent of the metal employed. This can be understood qual-
itatively in terms of a model based upon nonideal surfaces. In this model the metal-semiconductor
interface has a distribution of interface states that may arise from the presence of chemical defects
(e.g., an oxide film) or broken bonds, etc. The defect region leads to a distribution of electronic
levels in the bandgap at the interface. The distribution may be characterized by a neutral level 70
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having the properties that states below it are neutral if filled and above it are neutral if empty. If
the density of bandgap states near 70 is very large, then addition or depletion of electrons to the
semiconductor does not alter the Fermi level position at the surface and the Fermi level is said to
be pinned. In this case, the Schottky barrier height is e [e?’b= Eg - €70] and is almost independent
of the metal used. The model discussed above provides a qualitative understanding of the Schottky
barrier heights. However, the detailed mechanism of the interface state formation and Fermi level
pinning is quite complex.” |2]
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Chapter 8

JFET

General literature references: lecture notes Dec 1st 2009; Singh Chapter 8 (p338-349)

8.1 Be able to describe the operation principle of JFETs and MES-
FETs.

Literature references: lecture notes Dec 1st; Singh p338-342

8.2 Know how to calculate the pinch-off voltage.

Literature references: lecture notes Dec 1st p2,3; Singh p341

eNDh2
2€

If you compare that with the results for the field in the derivation of section 6.2 you will realize that
V) is just the field at z,, = h. The depletion width is, as above:

Vp:

2¢(Vp = V)
eNp

8.3 Be able to calculate the drain current for a JFET or MESFET.
Know the what the linear regime and the saturation regimes
are.

Literature references: lecture notes Dec 1st p9-12; Singh Chapter 8 (p346-348)

This is a quite long derivation. I talked with Prof. Hadley about it and he said we do not have
to know the whole derivation by heart, but we should know what is going on in the derivation and
be able to make use of it. So have a look at it, either in the lecture notes or in Singh and try do
understand what is happening and how the derivation works, you don’t have to remeber all the
equations. The principle is pretty simple actually.
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Chapter 9

MOSFET

General literature references: lecture notes Dec 15th 2009 and Jan 12th 2010; Singh Chapter 9
(p374-384; 396-400)

9.1 Be able to describe a MOS capacitor in terms of the flatband
voltage, threshold voltage, acuumulation, depletion, and inver-
sion.

Literature references: lecture notes Dec 15th; Singh p374-384

9.2 Draw the charge density, electric field, and electrostatic poten-
tial as a function of position in a MOS capacitor.

Literature references: lecture notes Dec 15th p1/-18; Singh p381
See Scans of Singh Appendix A, fig A.8

9.3 Be able to draw the band diagrams for a nMOS capacitor or a
pMOS capacitor.

Literature references: lecture notes Dec 15th p5-9; Singh p378,380

See Scans of Singh Appendix A, fig A.6 and fig A.7.

This page might also prove helpful:
http://jas.eng.buffalo.edu/education/mos/mosCap/biasBand10.html - Java Animation of the band
diagrams

9.4 Know how the equation for the drain current in the linear
regime is derived.

Literature references: lecture notes Jan 12th p6-9; Singh p396,397
Asin section 8.3 it is important to understand how the derivation works, in this case how the gradual
channel approximation works, not to learn the whole derivation by heart.
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What the gradual channel approximation is, is explainend in Singh p395:

'In the absence of any source-drain bias, the depletion width is simply given by the 1D model we
developed fo the pn diode. However, strictly speaking, when there is a source-sraind bias, one has to
solve a 2D problem to find the depletion width and, subsequently, the current flow. In the gradual
channel approximation, we assume that the field in the direction from the gate to the substrate is
much stronger than from the source to the drain, i.e, the potential varies 'slowly’ along the channel
as compared to the potential variation in the direction from the gate to the substrate. Thus the
depletion width, at a point along the channel, is given by the potential at that point using the simlpe
1D results. This approxmation is good if the gate length L is larger than the channel depth, which
is typically a few hundred angstroms.’

9.5 Be able to explain ’pinchoff’ and what controls the drain cur-
rent in the saturation regime. Know the equation for the drain
current in the saturation regime.

Literature references: lecture notes Jan 12th p10; Singh p396,397
This question belongs to the one above.

9.6 Know why the simple model for MOSFETs is inadequate to
describe very small MOSFETs.

Literature references: Singh p395

With all the current calculations (for JFET, MESFET and MOSFET) two approximations have
been made, firstly the mobility of the electrons is regarded as independent of the electric field, as
explained in section 5.3. This is, however, only valid for very small electric fields. As modern
MOSFETs are very small, the fields acting in these devices are quite high, so this approximation is
not valid anymore.

The second approximation is the gradual channel approximation, as explained in the section 9.4.

9.7 Be able to draw the electric field as a function of position along
a cross section from the gate, through the oxide and into the
substrate for various body voltages. Know how changing the
body voltage modifies the drain current.

Literature references: Singh p381,399,400
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Chapter 10

Bipolar

General literature references: lecture notes Jan 19th 2010; Singh Chapter 7 (p260-278)

10.1 Know the forward active, reverse active, cut-off, and satura-
tion operation modes of a bipolar transistor.

Literature references: lecture notes Jan 19th p17; Singh p266

10.2 Know how the emitter, base, and collector are doped and why.

Literature references: Singh p260-266

10.3 Be able to explain how a bipolar transistor works and why the
base must be thin.

Literature references: Singh p260-266
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Chapter 11

Opto-electronics

General literature references: lecture notes Jan 26th 2010; Singh Chapter 11

11.1 Be able to describe how a light emitting diode, solar cell, and
a laser diode work. Know what determines the color of a LED
or laser.

Literature references: lecture notes Jan 26th 2010; Singh Chapter 11
If you thoroughly understood the pn-junction, you will only have to learn a few more details to be
able to explain all of these 3 devices. Detailed information can be found in Singh:

e Optical processes: p458-463
e Solar cell: p465-468
o LED: p472-479

e Semiconductor laser: p482-491

11.2 Be able to explain total internal reflection and how it is used
in an optical fiber and why it can be a problem coupling light
out of an LED.

Literature references: lecture notes Jan 26th p9

Total internal reflection is the effect of light being completely reflected back if it travels from a
material with a high index of refraction to one with a lower index of refraction (e.g. from water to
air). This effect is used to keep light in a fibre wire, however for LEDs it is a disadvantage since, the
photons which are produced in the LED are spread out in all possible directions, many travel back
in the semiconductor material, create some electron-hole pairs in the base material and their light
is transformed to heat energy and thus lost. Other photons reach the surface of the LED, but total
internal reflection causes them to be reflected back into the material. In order to make the efficiency
of an LED better several steps can be taken. Firstly the surface of the LED can be roughened up,
in order to decrease the probability for total internal reflection to occur. Secondly the base material
should be chosen to have a higher band gap than the material producing the light, thus photons
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reflected back will not be able to be absorbed by the material, if some reflective materials are applied
at the very base of the LED the photons can even be reflected back out again.

For more information on total internal reflection see:

http://en.wikipedia.org/wiki/Total internal reflection for more information

Emitted photons
A\ 8
'?‘ / ‘ s
%_\}. N T
GaAsP ///// i
Absorbed 7 B =
Absorbed __ =2 = ¥ =~ — Graded alloy
photons T\ ks (2;1\.%_‘.1"'.‘;‘;_4—‘“ 4)
absorption
reflection -
] 2 A Emitted photons
total internal reflection / \ /
o - ——
‘f ] S e /

| —

\ f
CK s\ - | +— Graded loy
! \ J"} [ Gass, P

| — . — L——_'}" Si0),

Reflective contact

Figure 11.1: Lecture notes of Jan 26th p13, reflection, absorption and total internal reflection in a LED.

11.3 Know the difference between spontaneous emission and stim-
ulated emission. Know why a laser diode has a threshold cur-
rent.

Literature references: Singh p481,490

The first part should be known, the treshold current occurs, because if the current is too low ’'the
number of electrons and holes injected is small. As a result, the gain in the device is too small to
overcome the cavity loss.” [2]

11.4 Be able to describe light absorption in a semiconductor and
what this has to do with the bandgap.

Literature references: Singh p458-463
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Chapter 12

Appendix

A Very important pages of Singh - Scans

EV!C
Evac Conduction e
band #8 «—| Band becomes electrically active if
some electrons are excited into it
_________ E-
# Valence
band > s «—| Band becomes electrically active if
some empty states are present
Electrically
active band a Eg #4
Electrically

inert bands
n — ~
Electrically
inert bands
) B =

.
(a) " E—— @ # :I/
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Figure _1.18: (a) Allowed energy blands and ﬁlling of bands by electrons in metals. (b) A Figure 1.19: (a) Allowed energy bands and filling of bands in a semiconductor, (b) Density
schematic of allowed bands and density of states in a metal, In the example shown, Band #4 of allowed states in a semiconductor. Here, Band #5 is the valence band and Band #6 is the
is the conduction band. conduction band. )

Figure A.1: Left: Banddiagram and Fermi Energy for a metal. Right: Banddiagram and Fermi Energy for a insula-
tor/semiconductor. (from [2])
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Figure 5.2: (a) An idealized model of the p-n junction without bias, showing the neutral and
depletion areas. (b) A schematic showing various current and particle flow components in the
p-n diode at equilibrium. For electrons, the current flow is in the direction opposite to that of
the particle flow. Electrons that enter the depletion region from the p-side and holes that enter
the depletion region from the n-side are swept away and are the source of the drift components.

Figure 5.1: {a) The p- and n-type regions before junction formatian. The electron affinity ey
and work functions ed.; and ¢d.. are shown along with the Fermi levels. (b) A schematic of
the junction and the band profile showing the vacunm level and the semiconductor bands. The
Fermi level is “flat” in the absence of current flow.

Figure A.2: Left: Band diagrams for a pn junction. Right: Direction of the diffusion and drift currents for electrons and holes. Remeber these two diagrams well!
(from [2])
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As shown in Fig. 5.3, as a result of bringing the p and n type semiconductors, a built-in
vollage, Vi, is produced between the n and the p side of the structure, Referring to Fig.
5.3, the built-in voltage is given by

eV = Es = (Ec = EF)H _(EF‘ = Ev)l’

where the subscripts n and p refer to the n-side and p-side of the device, We know that
(see Eqn. 2.19)

(E.— Ep)a = —kBTﬂn{Pic}

where ny, is the electron density on the n-side of the device. Assuming that all of the
donors are ionized,
fin=Nz

Similarly (see Eqn. 2.22),

(Er —E))p= -kBTfﬂ(%

where py is the hole density on the p-side and is given by
Py =Ns

We now have

)

eVhi = By + kanﬂ[;n;:r
eV

Using the relation (Eqn. 2.24)

E
nf = N.N, exp (_E%)

we get
kgT
Vi = =2 fn(=20F) (5.3)

4

Electron band

Potential profile

Figure 5.3: A schematic showing the p-n diode and the potential and band profiles. The
voltage Vi is the built-in potential at equilibrinm. The expressions derived in the text can be
extended to the cases where an external potential is added to V.

If n, and ny are the electron densities in the n-type and p-type regions, the law of mass
action (i.e., the product np is constant) tells us that

NaPa = Nppy = n? (5.4)
Thus, the contact potential or built-in potential, 13; = Vi, — V}, is

Vei= 28T 4 Be (5.5)
or
kgl
Vi= 28T fn T (5.6)

We can thus write the following equivalent expressions:

Pp = tVai/ksT Nn {57]
Pn My

Figure A.3: Derivation of the built in voltage (from [2])
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Figure A.4: Band diagrams for a Shottky contact, without bias. (from [2])
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ductor side while the flow from the metal side is unaffected. (c) The rectifying characteristics
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Figure A.5: Band diagrams for a Shottky contact, with a voltage applied. (from [2])
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Figure 9.6: Effects of applied voltage on the ideal MOS capacitor: (a) negative voltage causes
hole accumulation in the p-type semiconductor; (b) positive voltage depletes holes from the
semiconductor surface; and (c) a larger positive voltage causes inversion—an “n-type” layer at
the semiconductor surface. The figures also show the electron and hole distributions in each
case. W represents the depletion width and N, is the background acceptor concentration.

Figure A.6: Band diagrams for MOSFET. (from [2])
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Figure 9.7: Bandbending of the semiconductor in the inversion mode. The interface potential
is V.. A simple criterion for inversion is that V. = 2¢ 5.

Figure A.7: Bandbending of MOSFET at Inversion. (from [2])

32



Charge

density
w
z
Q,: charge from background dopants
i~ Q,,: free carrier charge
A
F
Electric =
field
Fs
W
> 7
A V)
Electrostatic
potennal VGS: ij+V
\ V =Y+ Vox + Vs
| § ; z I
w1

Figure 9.8: Approximate distributions of charge, electric field, and electrostatic potential in
the ideal MOS capacitor in inversion. Once inversion begins, the depletion width W does not
increase further because of the high mobile electron density at the interface region.

Figure A.8: Charge distribution, electric field and potential for a MOSFET. (from [2])
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8

B.1 DENSITY OF STATES

We will start with the problem of density of states of electrons in free space or in
perfectly crystalline materials. We have noted that in perfect semiconductors, electrons
can be regarded as “free” electrons.

Let us consider the Schrisdinger equation for free electrons. The time-independent
equal.]on 15

—h2 a2 &% a2
e (ﬁ + W + @) U(r) = Eg(r) (B.1)
A general solution of this equation is
1 N
U(r) = -ﬁfi't 3 (B.2)

where the factor 71? comes because we wish to have one electron per volume V, or
f Erlury =1 (B.3)
v
‘We assume that the volume V is a cube of side L.

The corresponding energy of the electron is obtained from Eqn. B.1 and is

n2k?
=5 (B.4)
The momentum of the electron is (replacing p by the differential operator)
pY = —i.’i‘%\b — hk or p= hk (B.5)
while the velocity is
- B (B.6)
V= .

In classical mechanics the energy-momentum relation for the free electron is
E = p*/2m,, and p can be a continuous variable. The quantity hk appearing above
seems to be replacing p, in quantum mechanics. Due to the wave nature of the electron,
the quantity k is not continuous but discrete. For describing moving electrons, the
boundary condition used is known as a periodic boundary condition. Even though we
focus our attention on a finite volume V', the wave can be considered to spread in all
space as we conceive the entire space is made up of identical cubes of sides L, as shown
in Fig. B.1. Then,

Yz, y,z+ L) = wlz,y2)
W, y+L,z) = Plz,yz2)
Ylz+ Ly z) = d(z,y:2) (B.7)

The houndary conditions impose certain restrictions in the & of the wavefunction.

Becanse of the boundary conditions the allowed values of k are (n are integers—
positive and negative)
27n,
L

_ 27n;

_ 2y
L

Pky ==

ks k. = (B.8)

Wix+L)

Figure B.1: A schematic showing how periodic boundary conditions are applied. A large
volume is considered to be made up of identical cubic volumes.

If L, is large, the spacing between the allowed k values is very small, 1t is useful to discuss
the volume in k-space that each electronic state occupies. As can be seen from Fig. B.2,

this volume is
3 3
27 8
(.-.E) = -V-'—* {B,Q)

If £2 is a volume of k-space, the number of electronie states in this volume is

(B.10)

We will now use the discussion provided above to derive the concept of density
of states. The concept of density of states is extremely powerful, and important physical
properties such as optical absorption, transport, etc., are intimately dependent upon it.
Density of states is the number of available electronic states per unit volume per unit en-
ergy around an energy F. If we denote the density of states by N(E), the number of
states in a unit volume in an energy interval dE around an energy E is N(E)dE.

Figure A.9: Derivation of the 1D density of states-1. (from [2])
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Figure B.2: k-space volume of each electronic state. The separation between the various
allowed components of the k-vector is 2%,

The energies E and E + dE are represented by surfaces of spheres with radii

k and k + dk as shown in Fig. B.3. In a three-dimensional system, the k-space volume

between vector k and k + dk is 4rk®dk. We have shown in Eqn. B.9 that the k-space

volume per electron state is (37)®. Therefore, the number of electron states in the region
between k and k + dk is

4k’ dk k*dk ”

L (B.11)

Denoting the energy and energy interval corresponding to k and dk as I and
dE, we see that the number of electron states between E' and F + dE per unit volume

18

k*dk
N(E)E = 5 (B.12)
and since 2
kﬂ
e g (B.13)
Mg
5/ 2BV B
K2k = ﬁL“hf— (B.14)
and
3/2 1 f2
w(Eyap= e 545 (B.15)

VIt h?
An electron can have two possible states with a given energy. These states are called the

spin states. The electron can have a spin state h/2 or —h 2. To take spin into account,
the density of states obtained above is simply multiplied by 2,

32 pja
N(E) = ;{Er:o?hE (B.16)

® 4k dk = volume between surfaces of

spheres with radii k and k + dk

ky

Figure B.3: Geometry used to calculate density of siates, By finding the k-space volume in
an energy interval between E and E+ 4F, one ean find out how many allowed states there are.

In Fig. B.4, we show the density of states. Note that in the derivation given here, we

have assumed that the electron energy starts at E = 0. If the electron energy is given
by

22
Ez}ik
2"'-'?0

+ Vo (B.17)
i.e., if there is a background potential Vj, the density of states hecornes

ajz . J
N(E) = —_5—"@’“” o Vo)™? (B.18)
w2k

In this case, the density of states is zero for £ < V.

N(E)
gl

N e = =

Figure B.4: Variation in the energy dependence of the density of states.

Figure A.10: Derivation of the 1D density of states-2. (from [2])



B TImportant problems - solved

B.1 Average electron energy in a metal

For a metal at a temperature of T = 0 K, the conduction electrons at the bottom of the band have
an energy E = 0 and the conduction electrons with the highest energy have an energy E = Ef.
Assuming that the density of states is given by N(g) = Sﬂ‘éTTE, what is the average energy of the
conduction electrons?

An expression for the average energy should be given in terms of Planck’s constant h, the Fermi
energy Ef, the effective mass m, pi = 3.14159... and numerical constants. The functions sin, cos,
tan, asin, acos, exp, In, and sqrt can be used. For instance, 2*sin(h*m)*exp(Ef) is a valid (but

wrong) answer. Be sure to include a * to indicate multiplication; write 2¥h*m not 2hm to multiply

2 times h times m.
Hint: Not all of the constants h, m, Ef, and pi appear in the answer.

Answer:  Here we need to mess around with the density of states again. However, the prob-
lem is pretty straight forward. The distribution of the density of states (which is in this case the
3-D density of states for a free electron Fermi gas with L=1), tells us how many states there are for
electrons to occupy at a certain energy. Now to get the average energy we just have to calculate the
sum over the energy of each single electron and divide it by the number of electrons in the band.
We can get the number of electron by integrating over the density of states times the fermi function
(which tells us how many states are occupied):

n=/0 Ny frpE)dE

since we do our calculation for 7' = 0K the fermi function is a step function and its only effect in
this case is that it changes the limits of the integral:

Er 8mvm? [P 8TVm3 2 39
n=| N(E)dE:T/O VEdE = —3—(3E/")

To get the sum over the energy of each single electron we just have to integrate over the density of
states times the fermi function times the energy:

Esum:/o Ng)frpE)EdE

for T'= 0K we get:

/m3 rEr vm3 2
87Th3m / B32qp = STV (2 poy
0

Ey
Eguym = / N EdE = (= )
0 (E) 3 ‘5 f

To get the average we devide this result by the number of electrons we derived before:

8v/m3 12 3/2 9 145/2
P Eoum 7Th—3m(§Ef ) B (gEf ) _ 5E5/2—3/2
= = 5/2\ 3/2,  3°f
n Sﬂﬁ(%Ef/) (%Ef/ ) 3
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B.2 Band structure - Exam March 2007

The band structure of a semiconductor is shown below B.12. The zero of energy is chosen to be the
top of the valence band.

ENERGY (eV)

L A T A X UK EZ I

Figure B.11: Band structure of semiconductor
(a) Is this a direct or an indirect semiconductor? Why?

Answer: Indirect - The maximum of the valence band and the minimum of the conduction band are
not located directly above each other

(b) What is the band gap?

Answer: approx. lev - take the difference between valence band maximum and conduction band
minimum

(¢c) What are light holes and heavy holes? Explain how you can determine the effective mass of
the holes from this diagram.

Answer: The effective mass is given by

2

mr = h
T @2E((k)
dk2

Hence it is inversely proportional to the curvature of the Energy - the light holes are the ones with
the higher curvature, the heavy holes are the ones with the smaller curvature.

One accurate but rather complicated possibility of approximation for the effective mass is via mea-
suring the focal length: The equation for a parabola is az? + bx + ¢ = 0 if the zero point of the
coordinate system is put at the crest of the parabola b = ¢ = 0, derivating the remaining y = ax?
twice gives 2a for the curvature. The focal length of a parabola is f = 1/(4a), hence one can easily
get the curvature once the focal length is known. The focal length is the distance between focal
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point and crest of the parabola. The focal point can be found by letting some perpendicular light
rays reflect of the surface of the parabola, where the angle of the incident and the reflected beam
have to be the same (see B.12)

L1/

Figure B.12: Finding out the focal distance of a parabola

(d) When is a semiconductor degenerately doped?

Answer: (http://en.wikipedia.org/wiki/Semiconductor) Semiconductors so highly doped that they
have conductivity characteristics of metals.
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C Best of Equation - A Selection

This chapter should provide you with a short overview of all the equations you should know for the exam.
Physical constants:
e =1.6e — 19C; h = 6.626¢ — 34Js; kg = 1.38¢ — 23J/ K

Introduction:
Einstein relation: E = hf De Broglie: p = £ — = hk, Wavevector: k, = 2F = ZeT
~ ~ ~ 2
Schroedinger: ih-4£1 = Hv, Hamiltonian 3D potential well: H = 5-V? + V (z)
Solution wavefunction ) = ‘[ ‘[ 2 V2 o—iwt gy LT sin T gin ReTE
h2r2 b o 2 n? ! :
Energy: En n,n, = hw = 5" (L2 + L_i L—%)
Crystals:
Fermi-Dirac distribution function: fg = %EF
1+e BT
VIm3/2 /2

1D Density of states (know the derivation - see section 2.4) N = s
Number of electrons: n = on N(g)F(p)dE (also have a look at Problem 2.6 in Appendix B)
Intrinsic Semlconductors

Effective Mass: m* = h?(4£)~1

Density of electrons in the conduction band: n = Nge™ ’CBT :No = Q(m2 k;T):g/Q

: : o — e Tl _ o(mpksT\3/2
Density of holess in the valence band: n = Nye BT Ny = 2(—)

-E

Law of mass action: n =p =n? = NCNVe’wTTg“ Fermi energy: Ep = M + kBTZn(N—V)
Extri2nsic Se{niconduc;'.ors )

p:%:NDTENA;n:%:NA ND;EF*EV*FICBTln(N —Nb ) EF*EN‘FkBTln(N —Na )
Transport:

- = dvg;, ) g - 2, =
vp = —eE = m*a=m* v;gg Vang = ——efn?c =g; J = —nevg = "2 F

Ohm’s law J =oE; 0 = ”fnz‘c; Holes vg), = ppE Electrons vg, = —pinE

r_ _ — - i - . ; L _ 1 1

J = —nevgy + nevgp, = (nepy, + new,)E = o E Matthiessen’s Rule i prrri il ovsm——

- keTpn . _ ksTp
Diffusion: J,, 4 diff = el D, dn Ip.difr = — €] Dpd ; Diffusion constants Dn =2 D, = =2k
Current density equations: g, = fneunE +eD,dn T Jp =neu, Bl — er I
pn-junction:
Built in Potential (know the derivation, see section 6.1) eV;; = kgTlin NpNay Depletion Approximation -
: D p pp

know the derivation, see section 6.2, make sure you know the equations for the charge density, the electric
field, the potential and the depletion width, or that you can derive them.

Know the diode current I = Io(e’f;—VT — 1) and be able to derive it, see section 6.5

Contacts: v

Relationship between current and voltage in a Schottky contact: I = Iy, + Lns = Is(e*87)

JFET MESFET:

Pinch-off voltage: V, = % Depletion width: z, = \/% Have a look at the derivation of the drain
current, see section 8.3

MOSFET:

Have a look at the derivation of the drain current, see section 9.4 (gradual channel approximation)

BJT:

. . _ Ien
Emitter efficiency yp = 7 24—
Base transport factor with Ir = I, + Igp and Ic = Ion + Icp: ar = IIEC

Common-base current gain oy = f—g
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