

Technische Universität Graz

Institute of Solid State Physics

14. Optoelectronics

Jan. 23, 2019

Antimony (Sb) has a low vapor pressure and won't evaporate during the subsequent CVD step

Epi-growth

Collector Contact

Guard ring

p-well

Technische Universität Graz

Institute of Solid State Physics

Optoelectronics

light emitting diode laser diode solar cell photo detectors

communications, memory (DVD), displays, printing, barcode readers, solar energy, lighting, laser surgery, measurement, guidance, spectroscopy, LiFi

Photo detectors

Intrinsic semiconductor $\sigma = e(\mu_n n + \mu_p p)$ (used in copiers)

Unbiased pn junction - like a solar cell

Reverse biased pn junction - smaller capacitance, higher speed, less noise

Phototransistor - light injects carriers into the base. This forward biases the emitter base junction. High responsivity.

Ambient light detectors.

Active Pixel sensors for automated parking and gesture control (uses timeof-flight to image in 3-D).

Laser printer

https://en.wikipedia.org/wiki/Laser_printing

Absorption

Solid state lighting is efficient.

Material	Wavelength (nm)
InAsSbP/InAs	4200
InAs	3800
GaInAsP/GaSb	2000
GaSb	1800
$Ga_x In_{1-x} As_{1-y} P_y$	1100-1600
Ga _{0.47} In _{0.53} As	1550
$Ga_{0.27}In_{0.73}As_{0.63}P_{0.37}$	1300
GaAs:Er,InP:Er	1540
Si:C	1300
GaAs:Yb,InP:Yb	1000
Al _r Ga _{1-r} As:Si	650-940
GaAs:Si	940
Al _{0.11} Ga _{0.89} As:Si	830
Al _{0.4} Ga _{0.6} As:Si	650
GaAs _{0.6} P _{0.4}	660
$GaAs_{0.4}P_{0.6}$	620
$GaAs_{0.15}P_{0.85}$	590
$(Al_rGa_{1-r})_{0.5}In_{0.5}P$	655
GaP	690
GaP:N	550-570
Ga _r In _{1-r} N	340,430,590
SiC	400-460
BN	260,310,490

TABLE 1Common III-V materials used to produceLEDs and their emission wavelengths.

Light emitting diodes

a (Å)

IR LED

Measurement by Jan Enenkel

Confinement of light by total internal reflection

less pulse spreading for parabolically graded fiber

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

0.6 dB/km at 1.3 μm and 0.2 dB/km at 1.55 μm

Light emitting diodes

OLEDs

Galaxy Tab

Encapsulation technology

Electroluminescence in poly(p-phenylene)

Prof. Günther Leising

In 1992, Leising et al. for the first time reported on blue electroluminescence from OLEDs containing poly(pphenylene) (PPP).

OLEDs

Cathode is typically a low work function material Al, Ca - injects electrons

Anode is typically a high work function material ITO - injects holes

Q-dot LEDs

Coe-Sullivan, et al. Advanced Functional Materials, 10.1002/adfm.200400468

Nanoparticle OLEDs

Semiconductor nanosphere (Me-LPPP) OLEDs

Appl. Phys. Lett. 92, 183305 (2008)

Efficient lighting

Very efficient Many colors possible No toxic chemicals

Flexible, transparent, wearable displays

Transparent AMOLED

Solar cell

Solar spectrum

Shockley–Queisser limit

http://en.wikipedia.org/wiki/Shockley-Queisser_limit

Biofuel efficiency $\sim 1\%$