PHT.301 Physics of Semiconductor Devices

Home

Outline

Introduction

Electrons in crystals

Intrinsic Semiconductors

Extrinsic Semiconductors

Transport

pn junctions

Contacts

JFETs/MESFETs

MOSFETs

Bipolar transistors

Opto-electronics

Lectures

Books

Exam questions

Html basics

TUG students

Student projects

      

n-channel JFET

The expression for the drain current of a n-channel JFET in the linear regime is,

\[ \begin{equation} I_D=I_p\left[\frac{V_D}{V_p}-\frac{2}{3}\left(\frac{V_{bi}+V_D-V_G}{V_p}\right)^{3/2}+\frac{2}{3}\left(\frac{V_{bi}-V_G}{V_p}\right)^{3/2}\right], \end{equation} \]

where,

\begin{align} I_p =\frac{\mu_n {N_D}^2 Z e^2 h^3}{2L\epsilon_r\epsilon_0} \qquad V_p =\frac{e {N_D} h^2}{2 \epsilon_r\epsilon_0} \qquad eV_{bi} =k_B T \ln \left(\frac{N_A N_D}{{n_i}^2}\right) \qquad n_i=\sqrt{N_cN_v\left(\frac{T}{300}\right)^{3}}\exp\left(\frac{-E_g}{2k_BT}\right). \end{align}

In the saturation regime the current is,

\[ \begin{equation} I_D=I_p\left[\frac{1}{3}-\frac{V_{bi}-V_G}{V_p}+\frac{2}{3}\left(\frac{V_{bi}-V_G}{V_p}\right)^{3/2}\right]. \end{equation} \]

These expressions are valid assuming that the pn junction is reverse biased. For a n-channel JFET, $V_G$ < 0 and $V_D$ > 0 in this regime.

ID [mA]

VD [V]

 

$N_c=$

cm-3 @ 300 K

$N_v=$

cm-3 @ 300 K

$E_g=$

eV

$N_D=$

cm-3

$N_A=$

cm-3

$\mu_n=$

cm2/Vs

$h=$

μm

$L=$

μm

$Z=$

μm

$\epsilon_r=$

$T=$

K

$V_{D} (\text{max})$ =

V

$V_g$ [1] =

V

$V_g$ [2] =

V

$V_g$ [3] =

V

$V_g$ [4] =

V

$V_g$ [5] =

V

$V_g$ [6] =

V

 


$E_g=$ eV;  $n_i=$ cm-3;  $V_{bi}=$ V;  $I_p=$ A;  $V_p=$ V.