Phonon density of states of the Debye model

In the Debye model, the dispersion relation is linear, ω = c|k|, and the density of states is quadratic as it is in the long wavelength limit.

$$D(\omega )= \frac{3\omega^2}{2\pi^2 c^3}\quad \text{[s rad}^{-1}\text{ m}^{-3}\text{]}.$$

Here c is the speed of sound. This holds up to a maximum frequency called the Debye frequency ωD. In three dimensions there are 3 degrees of freedom per atom so the total number of phonon modes is 3n.

$$3n=\int\limits_0^{\omega_D}D(\omega)d\omega.$$

Here n is the atomic density. There are no phonon modes with a frequency above the Debye frequency. The Debye freqency is $\omega_D^3 = 6\pi^2nc^3$.

The form below generates a table of where the first column is the angular frequency ω in rad/s and the second column is the density of states D(ω) in units of s/(rad m³).

  D(ω)
[1015s/(rad m³)]

ω [1012 rad/s]

Speed of sound: c =

[m/s]

Atomic density: n =

[1/m³]

Material

Speed of sound [m/s]

Atom density [m-3]

Debye frequency [rad/sec]

 aluminum 

 6320 

 6.03×1028

 9.66×1013

 copper 

 4660 

 8.47×1028

 7.98×1013

 diamond 

 18000 

 17.70×1028

 39.39×1013

 gold 

 3240 

 5.91×1028

 4.92×1013

 lead 

 2160 

 3.30×1028

 2.70×1013

 ice(-4C) 

 3280 

 3.07×1028

 4.00×1013

 zinc 

 4170 

 6.57×1028

 6.56×1013

 titanium 

 6100 

 5.66×1028

 9.13×1013

 tin 

 3320 

 3.69×1028

 4.31×1013

 silicon 

 9620 

 4.99×1028

 13.81×1013

 nickel 

 5630 

 9.14×1028

 9.88×1013

 iron oxide(magnetite) 

 5890 

 1.34×1028

 5.45×1013

 tungsten 

 5180 

 6.42×1028

 8.08×1013

 zirconium 

 4650 

 4.34×1028

 6.37×1013

 molybdenum 

 6250 

 6.39×1028

 9.74×1013

 beryllium 

 12900 

 12.29×1028

 25.01×1013

The density of states can be used to calculate the temperature dependence of thermodynamic quantities.

The high temperature limit $k_BT > > \hbar\omega_D$

The energy spectral density is,

$$u(\omega) = \frac{3\omega^2}{2\pi^2 c^3}\frac{\hbar\omega}{\exp\left(\frac{\hbar\omega}{k_BT}\right) -1}.$$

In the high temperature limit, the exponential factor can be expanded as $\exp\left(\frac{\hbar\omega}{k_BT}\right)\approx 1 + \frac{\hbar\omega}{k_BT}$. The energy spectral density then becomes,

$$u(\omega) = \frac{3\omega^2}{2\pi^2 c^3}k_BT.$$

This can be integrated to yield the internal energy density,

$$u = \frac{\omega_D^3}{2\pi^2 c^3}k_BT= 3nk_BT.$$

The specific heat has the Dulong-Petit form,

$$c_v = 3nk_B.$$