| |
Phonons
Phonons are quantized particles of sound. Similar to photons, the phonon energy is related to the frequency of the sound waves $E=hf$ and the phonon momentum is related to the wavelength of the sound waves $p=h/\lambda$.
Reading
Read the Normal Modes and Phonons section of the outline.
or
Kittel chapter 4: Crystal vibrations and Kittel chapter 5: Phonons and lattice vibrations
or
R. Gross und A. Marx: Dynamik des Kristallgitters und Thermische Eigenschaften des Kristallgitters
For the exam
- Be able to write down Newton's law for a periodic arrangement of atoms connected by linear springs. Know the form of the eigenfunction solutions that solve these equations.
- Be able to draw the dispersion relation for crystals such as Ag, NaCl, or TiO2. There are always three acoustic branches. The acoustic branches are linear near k = 0. There are 3p - 3 optical branches where p is the number of atoms in the primitive unit cell. All acoustic and optical branches meet the Brillouin zone boundary at 90°.
- Know how to calculate the density states and from the dispersion relation and how to calculate the internal energy, Helmholtz free energy, specific heat, and entropy.
- Be able to define: Einstein model, Debye model, and Umklapp scattering.
- Be able to describe how the phonon dispersion relation can be measured with neutron scattering.
- Be able to describe how kinetic theory can be used to describe the phonon contribution to the thermal conductivity.
Resources
Table summarizing the properties of phonons
|