Konstante Kraft = Parabelbewegung

$z$

$t$

$$\vec{r}=\left(x_0 +v_{x0}t+\frac{F_x}{2m}t^2\right)\,\hat{x}+\left(y_0 +v_{y0}t+\frac{F_y}{2m}t^2\right)\,\hat{y}+\left(z_0 +v_{z0}t+\frac{F_z}{2m}t^2\right)\,\hat{z}$$ $$\vec{v}=\left(v_{x0}+\frac{F_x}{m}t\right)\,\hat{x}+\left(v_{y0}+\frac{F_y}{m}t\right)\,\hat{y}+\left(v_{z0}+\frac{F_z}{m}t\right)\,\hat{z}$$ $$\vec{a}=\frac{F_x}{m}\,\hat{x}+\frac{F_y}{m}\,\hat{y}+\frac{F_z}{m}\,\hat{z}$$ $$\vec{F}=F_x\,\hat{x}+F_y\,\hat{y}+F_z\,\hat{z}$$

$z_0=0$ m   $m=1$ kg

$F_{z}=$ -1 [N]

$v_{z0}=$ 4 [m/s]

Erläuterung: