| ||||
PHY.K02UF Molecular and Solid State Physics | ||||
$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3$ : $(u,v,w)$
|
The real space and reciprocal space primitive translation vectors are:
\begin{equation} \large \vec{a}_1=\frac{a}{2}(\hat{x}+\hat{y}-\hat{z}),\quad \vec{a}_2=\frac{a}{2}(-\hat{x}+\hat{y}+\hat{z}),\quad\vec{a}_3=\frac{a}{2}(\hat{x}-\hat{y}+\hat{z}),\\ \large \vec{b}_1=\frac{2\pi}{a}(\hat{k}_x+\hat{k}_y),\quad \vec{b}_2=\frac{2\pi}{a}(\hat{k}_y+\hat{k}_z),\quad\vec{b}_3=\frac{2\pi}{a}(\hat{k}_x+\hat{k}_z). \end{equation}The first Brillouin zone of an bcc lattice has the same shape (a rhombic dodecahedron) as the Wigner-Seitz cell of a fcc lattice. Some crystals with an bcc Bravais lattice are Li, Na, K, Cs, V, Cr, Fe, Nb, Mo, Rb, Ba, Ta.