| |
$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$
Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ | Point group |
$\Gamma:\,(0,0,0)$ | $[0,0,0]$ | mmm |
$X:\, (\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ | mmm |
$Y:\, (0,\frac{1}{2},0)$ | $[0,\frac{\pi}{b},0]$ | mmm |
$Z:\, (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ | mmm |
$T:\, (0,\frac{1}{2},\frac{1}{2})$ | $[0,\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |
$U:\, (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ | mmm |
$S:\, (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{b},0]$ | mmm |
$R:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |
|
$\overline{\Gamma Y} = \overline{ZT}= \overline{XS}= \overline{UR} = \frac{\pi}{b}$ |
$\overline{\Gamma X} = \overline{YS}= \overline{ZU}= \overline{TR} = \frac{\pi}{a}$ |
$\overline{\Gamma Z} = \overline{YT}= \overline{SR}= \overline{XU}= \frac{\pi}{s}$ |
$\overline{\Gamma T} = \frac{\pi}{bc}\sqrt{b^2+c^2}$ |
$\overline{\Gamma U} = \frac{\pi}{ac}\sqrt{a^2+c^2}$ |
$\overline{\Gamma R} = \pi\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}$ |
|
Symmetry lines | Point group |
$\Lambda :\,(0,0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
$H :\,(0,\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
$G :\,(\frac{1}{2},0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
$Q :\,(\frac{1}{2},\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |
$\Delta :\,(0,v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |
$B :\,(0,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |
$D :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |
$P :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |
$\Sigma :\,(u,0,0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |
$A :\,(u,0,\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |
$C :\,(u,\frac{1}{2},0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |
$E :\,(u,\frac{1}{2},\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |
|