|
| |
$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$
| Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ |
| $\Gamma:\,(0,0,0)$ | $[0,0,0]$ |
| $X:\,(\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ |
| $M:\, (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{a},0]$ |
| $Z:\, (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ |
| $R:\, (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ |
| $A:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}]$ |
| |
$\overline{\Gamma X} = \overline{ZR}= \overline{MX}= \overline{AR} = \frac{\pi}{a}$ |
$\overline{\Gamma Z} = \overline{MA}= \overline{XR}= \frac{\pi}{c}$ |
$\overline{\Gamma M} = \overline{ZA}= \frac{\sqrt{2}\pi}{a}$ |
$\overline{\Gamma A} = \frac{\pi}{ac}\sqrt{2c^2+a^2}$ |
$\overline{\Gamma R} = \frac{\pi}{ac}\sqrt{c^2+a^2}$ |
| |
| Symmetry lines |
| $\Delta :\,(v,0,0)$ $0\lt v\lt\frac{1}{2}$ |
| $\Sigma :\,(v,v,0)$ $0\lt v\lt\frac{1}{2}$ |
| $Y :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ |
| $\Lambda :\,(0,0,v)$ $0\lt v\lt\frac{1}{2}$ |
| $U :\,(v,0,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
| $S :\,(v,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
| $T :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
| $V :\,(\frac{1}{2},\frac{1}{2},v)$ $0\lt v\lt\frac{1}{2}$ |
| $W :\,(\frac{1}{2},0,v)$ $0\lt v\lt\frac{1}{2}$ |
|