PHY.K02UF Molecular and Solid State Physics

The first Brillouin zone of a tetragonal lattice

    

$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$

 Symmetry points $(u,v,w)$ $[k_x,k_y,k_z]$
 $\Gamma:\,(0,0,0)$  $[0,0,0]$
 $X:\,(\frac{1}{2},0,0)$  $[\frac{\pi}{a},0,0]$ 
 $M:\, (\frac{1}{2},\frac{1}{2},0)$  $[\frac{\pi}{a},\frac{\pi}{a},0]$ 
 $Z:\, (0,0,\frac{1}{2})$  $[0,0,\frac{\pi}{c}]$ 
 $R:\, (\frac{1}{2},0,\frac{1}{2})$  $[\frac{\pi}{a},0,\frac{\pi}{c}]$ 
 $A:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$  $[\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}]$ 
 

$\overline{\Gamma X} = \overline{ZR}= \overline{MX}= \overline{AR} = \frac{\pi}{a}$

$\overline{\Gamma Z} = \overline{MA}= \overline{XR}= \frac{\pi}{c}$

$\overline{\Gamma M} = \overline{ZA}= \frac{\sqrt{2}\pi}{a}$

$\overline{\Gamma A} = \frac{\pi}{ac}\sqrt{2c^2+a^2}$

$\overline{\Gamma R} = \frac{\pi}{ac}\sqrt{c^2+a^2}$

 
 Symmetry lines 
 $\Delta :\,(v,0,0)$ $0\lt v\lt\frac{1}{2}$ 
 $\Sigma :\,(v,v,0)$ $0\lt v\lt\frac{1}{2}$ 
 $Y :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ 
 $\Lambda :\,(0,0,v)$ $0\lt v\lt\frac{1}{2}$ 
 $U :\,(v,0,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ 
 $S :\,(v,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ 
 $T :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ 
 $V :\,(\frac{1}{2},\frac{1}{2},v)$ $0\lt v\lt\frac{1}{2}$ 
 $W :\,(\frac{1}{2},0,v)$ $0\lt v\lt\frac{1}{2}$ 

The real space and reciprocal space primitive translation vectors are:

$\large \vec{a}_1 = a\hat{x}$  $\large \vec{a}_2 = a\hat{y}$  $\large \vec{a}_3 = c\hat{z}$,

$\large \vec{b}_1 = \frac{2\pi}{a}\hat{k_x}$  $\large \vec{b}_2 =\frac{2\pi}{a}\hat{k_y}$  $\large \vec{b}_3 = \frac{2\pi}{c}\hat{k_z}$.