| |
$\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$
Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ |
$\Gamma:\,(0,0,0)$ | $[0,0,0]$ |
$X:\,(\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ |
$M:\, (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{a},0]$ |
$Z:\, (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ |
$R:\, (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ |
$A:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}]$ |
|
$\overline{\Gamma X} = \overline{ZR}= \overline{MX}= \overline{AR} = \frac{\pi}{a}$ |
$\overline{\Gamma Z} = \overline{MA}= \overline{XR}= \frac{\pi}{c}$ |
$\overline{\Gamma M} = \overline{ZA}= \frac{\sqrt{2}\pi}{a}$ |
$\overline{\Gamma A} = \frac{\pi}{ac}\sqrt{2c^2+a^2}$ |
$\overline{\Gamma R} = \frac{\pi}{ac}\sqrt{c^2+a^2}$ |
|
Symmetry lines |
$\Delta :\,(v,0,0)$ $0\lt v\lt\frac{1}{2}$ |
$\Sigma :\,(v,v,0)$ $0\lt v\lt\frac{1}{2}$ |
$Y :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ |
$\Lambda :\,(0,0,v)$ $0\lt v\lt\frac{1}{2}$ |
$U :\,(v,0,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
$S :\,(v,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
$T :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |
$V :\,(\frac{1}{2},\frac{1}{2},v)$ $0\lt v\lt\frac{1}{2}$ |
$W :\,(\frac{1}{2},0,v)$ $0\lt v\lt\frac{1}{2}$ |
|