Bewegung eines geladenen Teilchens in einem konstanten elektrischen Feld

Die Bewegung eines Teilches der Ladung $q$ und der Masse $m$ in einem konstanten elektrischen Feld $\vec{E}$ wird beschrieben durch:

$z$

$t$

$$\vec{r}=\left(x_0 +v_{x0}t+\frac{qE_x}{2m}t^2\right)\,\hat{x}+\left(y_0 +v_{y0}t+\frac{qE_y}{2m}t^2\right)\,\hat{y}+\left(z_0 +v_{z0}t+\frac{qE_z}{2m}t^2\right)\,\hat{z},$$ $$\vec{v}=\left(v_{x0}+\frac{qE_x}{m}t\right)\,\hat{x}+\left(v_{y0}+\frac{qE_y}{m}t\right)\,\hat{y}+\left(v_{z0}+\frac{qE_z}{m}t\right)\,\hat{z},$$ $$\vec{a}=\frac{qE_x}{m}\,\hat{x}+\frac{qE_y}{m}\,\hat{y}+\frac{qE_z}{m}\,\hat{z},$$ $$\vec{F}=qE_x\,\hat{x}+qE_y\,\hat{y}+qE_z\,\hat{z}.$$

$z_0=0$ m   $m=1$ kg

$qE_{z}=$ -1 [N]

$v_{z0}=$ 4 [N]

Die Kraft auf das Teilchen ist konstant. Somit folgt die Bewegung einer Parabel. Siehe die APP Konstante Kraft = Parabelbewegung. Dieses Problem kann auch numerisch mit der APP Numerisches Lösen von Differentialgleichungen sechster Ordnung gelöst werden.

Frage