|  |  | $\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$ 
| Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ | Point group |  | $\Gamma:\,(0,0,0)$ | $[0,0,0]$ | mmm |  | $X:\,    (\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ | mmm |  | $Y:\,    (0,\frac{1}{2},0)$ | $[0,\frac{\pi}{b},0]$ | mmm |  | $Z:\,    (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ | mmm |  | $T:\,    (0,\frac{1}{2},\frac{1}{2})$ | $[0,\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |  | $U:\,    (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ | mmm |  | $S:\,    (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{b},0]$ | mmm |  | $R:\,    (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |  |  |  | $\overline{\Gamma Y} = \overline{ZT}= \overline{XS}= \overline{UR} =    \frac{\pi}{b}$ |  | $\overline{\Gamma X} = \overline{YS}= \overline{ZU}= \overline{TR} =    \frac{\pi}{a}$ |  | $\overline{\Gamma Z} = \overline{YT}= \overline{SR}= \overline{XU}=     \frac{\pi}{s}$ |  | $\overline{\Gamma T} =                                                  \frac{\pi}{bc}\sqrt{b^2+c^2}$ |  | $\overline{\Gamma U} =                                                  \frac{\pi}{ac}\sqrt{a^2+c^2}$ |  | $\overline{\Gamma R} =                                                  \pi\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}$ |  |  |  | Symmetry lines | Point group |  | $\Lambda     :\,(0,0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |  | $H           :\,(0,\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |  | $G           :\,(\frac{1}{2},0,w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |  | $Q           :\,(\frac{1}{2},\frac{1}{2},w)$ $0\lt w\lt\frac{1}{2}$ | mm2 |  | $\Delta      :\,(0,v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |  | $B           :\,(0,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |  | $D           :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ | mm2 |  | $P           :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ | mm2 |  | $\Sigma      :\,(u,0,0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |  | $A           :\,(u,0,\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |  | $C           :\,(u,\frac{1}{2},0)$ $0\lt u\lt\frac{1}{2}$ | mm2 |  | $E           :\,(u,\frac{1}{2},\frac{1}{2})$ $0\lt u\lt\frac{1}{2}$ | mm2 |  |