|  |  | $\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$ 
| Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ | Point group |  | $\Gamma:\,(0,0,0)$ | $[0,0,0]$ | mmm |  | $Y:\,    (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},0,0]$ | mmm |  | $Y':\,   (-\frac{1}{2},\frac{1}{2},0)$ | $[0,\frac{\pi}{b},0]$ | mmm |  | $Z:\,    (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ | mmm |  | $T:\,    (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ | mmm |  | $T':\,   (-\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[0,\frac{\pi}{b},\frac{\pi}{c}]$ | mmm |  | $S:\,    (0,\frac{1}{2},0)$ | $[\frac{\pi}{2a},\frac{\pi}{2b},0]$ | 2/m |  | $R:\,    (0,\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{2a},\frac{\pi}{2b},\frac{\pi}{c}]$ | 2/m |  |  |  | $\overline{\Gamma Y} =                                  \frac{\pi}{a}$ |  | $\overline{\Gamma Z} = \overline{YT}= \overline{SR}=    \frac{\pi}{c}$ |  | $\overline{\Gamma T} =                                  \frac{\pi}{ac}\sqrt{a^2+c^2}$ |  |  |  | Symmetry lines | Point group |  | $\Lambda     :\,(0,0,w)$ $                                      0\lt w\lt\frac{1}{2}$ | mm2 |  | $H           :\,(\frac{1}{2},\frac{1}{2},w)$ $                  0\lt w\lt\frac{1}{2}$ | mm2 |  | $\Sigma      :\,(u,u,0)$ $                                      0\lt u\lt\frac{1}{2}$ | mm2 |  | $A           :\,(u,u,\frac{1}{2})$ $                            0\lt u\lt\frac{1}{2}$ | mm2 |  | $\Delta      :\,(-v,v,0)$ $                                     0\lt v\lt\frac{(a^2+b^2)}{4a^2}$ | mm2 |  | $B           :\,(-v,v,\frac{1}{2})$ $                           0\lt v\lt\frac{(a^2+b^2)}{4a^2}$ | mm2 |  | $F           :\,(\frac{1}{2}-v,\frac{1}{2}+v,0)$ $              0\lt v\lt\frac{1}{2}-\frac{(a^2+b^2)}{4a^2}$ | mm2 |  | $G           :\,(\frac{1}{2}-v,\frac{1}{2}+v,\frac{1}{2})$ $    0\lt v\lt\frac{1}{2}-\frac{(a^2+b^2)}{4a^2}$ | mm2 |  | $D           :\,(0,\frac{1}{2},w)$ $                            0\lt w\lt\frac{1}{2}$ | 2 |  |