|  |  | $\large \vec{k}=u\vec{b}_1+v\vec{b}_2+w\vec{b}_3\,:\,(u,v,w)$ 
| Symmetry points $(u,v,w)$ | $[k_x,k_y,k_z]$ |  | $\Gamma:\,(0,0,0)$ | $[0,0,0]$ |  | $X:\,(\frac{1}{2},0,0)$ | $[\frac{\pi}{a},0,0]$ |  | $M:\, (\frac{1}{2},\frac{1}{2},0)$ | $[\frac{\pi}{a},\frac{\pi}{a},0]$ |  | $Z:\, (0,0,\frac{1}{2})$ | $[0,0,\frac{\pi}{c}]$ |  | $R:\, (\frac{1}{2},0,\frac{1}{2})$ | $[\frac{\pi}{a},0,\frac{\pi}{c}]$ |  | $A:\, (\frac{1}{2},\frac{1}{2},\frac{1}{2})$ | $[\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}]$ |  |  |  | $\overline{\Gamma X} = \overline{ZR}= \overline{MX}= \overline{AR} = \frac{\pi}{a}$ |  | $\overline{\Gamma Z} = \overline{MA}= \overline{XR}=  \frac{\pi}{c}$ |  | $\overline{\Gamma M} = \overline{ZA}=   \frac{\sqrt{2}\pi}{a}$ |  | $\overline{\Gamma A} =    \frac{\pi}{ac}\sqrt{2c^2+a^2}$ |  | $\overline{\Gamma R} =    \frac{\pi}{ac}\sqrt{c^2+a^2}$ |  |  |  | Symmetry lines |  | $\Delta :\,(v,0,0)$ $0\lt v\lt\frac{1}{2}$ |  | $\Sigma :\,(v,v,0)$ $0\lt v\lt\frac{1}{2}$ |  | $Y :\,(\frac{1}{2},v,0)$ $0\lt v\lt\frac{1}{2}$ |  | $\Lambda :\,(0,0,v)$ $0\lt v\lt\frac{1}{2}$ |  | $U :\,(v,0,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |  | $S :\,(v,v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |  | $T :\,(\frac{1}{2},v,\frac{1}{2})$ $0\lt v\lt\frac{1}{2}$ |  | $V :\,(\frac{1}{2},\frac{1}{2},v)$ $0\lt v\lt\frac{1}{2}$ |  | $W :\,(\frac{1}{2},0,v)$ $0\lt v\lt\frac{1}{2}$ |  |